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Abstract

A remarkable inequality, with utterly explicit constants, established by Erdélyi, Magnus, andNevai,

states that for���>− 1
2, the orthonormal Jacobi polynomialsP(�,�)

k
(x) satisfy

max|x|�1

{
(1− x)�+1/2(1+ x)�+1/2

(
P(�,�)
k

(x)
)2}=O(�)

[Erdélyi et al., Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials, SIAM J.
Math. Anal. 25 (1994), 602–614]. They conjectured that the real order of the maximum isO(�1/2).
Here we will make half a way towards this conjecture by proving a new inequality which improves
their result by a factor of order(1� + 1

k
)−1/3.We also confirm the conjecture, even in a stronger form,

in some limiting cases.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we will use bold letters for orthonormal polynomials versus regular charac-
ters for orthogonal polynomials in the standard normalization[6,20].
Let pk be an orthonormal polynomialpk of degreek, orthogonal with respect to a non-

negative weight functionW , supported on finite or infinite intervalI (we deal exceptionally
with the classical case). Let also�(x) be a given auxiliary function nonnegative onI . In this
paper�(x)will be chosen depending only on a specific family of polynomials in theAskey
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scheme, e.g we set� = √
1− x2 and

√
x, for all Jacobi and all Laguerre polynomials

respectively. We define the following functions

M(x; pk,�) = W(x)�(x)p2k(x), (1)

and the functional

M(pk,�) = max
x∈I

{
M(x; pk,�)

}
. (2)

Thus, for the Jacobi case we have

M
(
P(�,�)k ,

√
1− x2

)
= max−1�x�1

{
(1− x)�+1/2(1+ x)�+1/2

(
P(�,�)k (x)

)2}
.

The origin of the function� is, of course, the Szegö theory and its extensions stating
that for a wide class of polynomials orthonormal on[−1,1] andk → ∞, the expression
(1 − x2)1/4W1/2pk mimics in a sense the behaviour of the Chebyshev polynomialsTk,
equioscillating between±√

2/�, [17,20]. Similar results probably hold for many other
families, including classical discrete polynomials. The deepest statement in this direction
asserts that for exponential weightsW = e−Q, under some not too restrictive, but rather
technical conditions,

max
I

{
W |(x − a−k)(x − ak)|1/2p2k(x)

}
< C, (3)

with C independent onk, anda±k being the Mhaskar–Rahmanov–Saff numbers forQ
[13–15].Yet the real reason for such a behaviour is probably hidden not in weights but rather
in much poorly understood properties of the coefficients of the three term recurrence.
Whereas many inequalities onM are known for classical orthogonal polynomials for

properly restricted parameters (see e.g. [1,2,5] and the references therein), themain problem
we are trying to deal with is to estimateM uniformly for the entire family. That is, bringing
the Jacobi case as an example, to supply tight bounds uniform ink, � and�. An astonishing
fact is that this is sometimes possible under marginal restrictions on the parameters. Yet,
the only known examples, putting aside asymptotics, are the Hermite polynomials with just
one parameterk involved [9] (see (12) below), and the following remarkable inequality,
established by Erdélyi et al. [2],

Theorem 1.

M
(
P(�,�)k ,

√
1− x2

)
�

2e

(
2+

√
�2 + �2

)
�

, (4)

providedk�0,and�, � > −1
2.

A surprising independence onk in (4) is probably an artefact and restored in sharper
bounds by the customary multiplierk−1/6. They also conjectured that (4) can be tighten to(
�2 + �2

)1/4
.
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In this paper we will improve (4) and provide some evidences that the real order of

M
(
P(�,�)k ,

√
1− x2

)
is

√
� k−1/6, with ���. We will use a method suggested in [7],

which, at least in principal, can be adapted for orthogonal polynomials with known second
order differential or difference equations. Moreover, it seems that the only real obstacle
for getting explicit asymptotically sharp estimates in most of the cases is extremely messy
calculations needed to bound zeroes of multivariable polynomials. As a matter of fact, our
proof is quite similar to that of [2].We just replaced theChristoffel function by a “Laguerre”
one (14). The last has a similar partial fraction expansion, but allows much more refined
estimates.
Our main result is:

Theorem 2.

M
(
P(�,�)k ,

√
1− x2

)
�11

(
(� + � + 1)2(2k + � + � + 1)2

4k(k + � + � + 1)

)1/3

, (5)

provided the parameters ofP(�,�)k (x) are in the regionD defined by

k�6, ��� > 1
4, 16���4� + 4� + 1. (6)

In particular, (5) holds for

k�6, ���� 1+ √
2

4
. (7)

Despite the attractive numbers, appearance of the regionD is owing rather to our attempts
to find a compromise between precision and the amount of calculations required.
We also confirm the conjecture in some limiting cases.

Theorem 3. (i) There is an absolute constant C such that for a fixed k and sufficiently large
� and� = (1− �)�, with � = o

(
�−1/2

)
,

M
(
P(�,�)k ,

√
1− x2

)
�C

√
� k−1/6. (8)

Moreover, (8) holds,yet with C depending on k and�, if k → ∞, � → ∞, k 
 �, and�
is fixed.
(ii) For fixed k and�,

lim
�→∞ �−1/2M

(
P(�,�)k ,

√
1− x2

)
<
(4k2 + 4�k + 2� + 2)�+ 1

2

�(� + 1)
= O(1). (9)

In fact, at the cost of some routine calculations, the last theorem may be restated in a
non-asymptotic version.Yet, it is worth noticing that the dependence onk and� in (9) is an
artefact reflecting rather the lack of sharp bounds for the Laguerre polynomials used in the
proof than the real behaviour ofM.
Apparently, Theorem 2 and (8) make quite plausible the following refinement of the

Erdélyi, Magnus and Nevai conjecture,
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Conjecture 1. The exponent13 in (5) can be replaced by16.

To simplify formulas in the sequel it will be convenient to use the following set of
variables,

s = � + � + 1, q = � − �, r = 2k + � + � + 1,

and their trigonometric counterparts

q = r sin�, s = r sin�, 0��, � <
�
2
.

For example the right-hand side in (5) is now written as

s2/3r2/3(r2 − s2)−1/3 = r2/3 tan2/3 �.

SinceP(�,�)k (x) = (−1)k P(�,�)k (−x), we may assume���, therefore everywhere in the
sequelq�0, and 0�� < �. We also introduce the binary variablej ∈ {−1,1}. As we will
see, in many respects,q, s andr are more natural parameters thank, � and�. At least they
allow to shrink many otherwise awful expressions to a reasonable size.
The idea behind the proof of Theorem2 is very simple, but requires a substantial amount

of calculations which hardly can be done without an appropriate symbolic package. We
used Mathematica.
The following pointwise estimate onM

(
x;P(�,�)k ,

√
1− x2

)
in the oscillatory region

was given in [2].

Theorem 4. Letk�1,and�, � > −1
2. Then for−1< x < 1,

M
(
x;P(�,�)k ,

√
1− x2

)
� 2e

�
r(r + 1)

(r + 1)2 − 2�2/(1− x)− 2�2/(1+ x)
, (10)

provided the denominator(r + 1)2 − 2�2
1−x − 2�2

1+x is positive.

Theorem2 is an easy corollary of (10) and the following claim.

Theorem 5. All local maxima of the functionM
(
x;P(�,�)k ,

√
1− x2

)
are in the interval

(N−1, N1), where

Nj = j

(
cos(� + j�)− �j

(
sin4 (� + j�)
2 cos� cos�

)1/3

r−2/3

)
,

and

�j =



1
3, j = −1,

3
10, j = 1,

(11)

provided the parametersk, � and� are inD.
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The bounds given in the last theorem are very precise up to the values of�j . This is
so because the same expression with two-side bounds on the corresponding constants�j
(up to some minor higher order terms) has been obtained for the extreme zeros of Jacobi
polynomials[8,10]. Therefore, any improvement of (10) would lead to the corresponding
improvement of (5).
Having at hand uniform bounds, we may exploit some limiting relations between or-

thogonal polynomials in the Askey scheme [3,6] to prove Theorem 3. Uniform bounds
for the Hermite polynomials were recently obtained by a method similar to that of this
paper [9],

C1 < M (Hk, 1) k1/6 < C2, (12)

whereC1 ≈ 1
2,C2 is a constant, e.g. one can takeC2 = 10, fork�2000, orC2 = 1063, for

k�6. Yet, in the Hermite case we could use very precise inequalities of[4], whereas (10)
seems rather poor in the relevant oscillatory region.
The paper is organized as follows.Thenext two sections dealwith the proof ofTheorem5.

In Section 2 we reduce the problem to bounding extreme zeros of a six degree polynomial
in x being as well a polynomial in parameters�,� andk. The required bounds will be
established in a quite technical Section 3. In Section 4 we will deduce Theorem 2 from
Theorem 5. A simple proof of Theorem 3 is given in Section 5.

2. Main inequality

Let us stress that in what followsx is restricted to[−1,1].
The arguments we will present here are rather general and make no use of orthogonality.

All that we need is a second order differential equation with a solution being a hyperbolic
polynomial, that is a real polynomial with only real zeros, or a uniform limit of such
polynomials.

Let f = f (x) = P(�,�)k (x). Notice that in the sequel we use dash only for derivatives in
x. We introduce the logarithmic derivativet = t (x) = f ′(x)/f (x). Let also� = �k(�,�)
be the set ofx corresponding to the local maxima of

M
(
x;P(�,�)k ,

√
1− x2

)
,

in x, for given values of�,� andk.
From the equation

d

dx
M
(
x;P(�,�)k ,

√
1− x2

)
= 0,

we get

t (x) = sx + q

2(1− x2)
, x ∈ �. (13)
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Ourmain tool in bounding theextremepoints of�will be the followingelementaryLaguerre
inequality,

U(p(x)) = p′2(x)− p(x)p′′(x)
p2(x)

=
k∑
i=1

1

(x − xi)2
> 0, (14)

wherep(x) = c
∏k
i=1 (x − xi), is a hyperbolic polynomial. Notice that ifp is hyperbolic

thenp − 	p′ is also hyperbolic for any real	. Thus, we get

U(f − 	f ′) > 0. (15)

We have to calculate this expression explicitly. For, we observe that using the standard
differential equation for Jacobi polynomials,

(1− x2)f ′′ = (� − � + (� + � + 2)x)f ′ − k(k + � + � + 1)f, (16)

in a pure algebraic manner one can exclude all the derivatives off of order greater than
one, when such appear. Moreover,U(f − 	f ′)f 2 is a quadratic form inf andf ′. Hence
U(f − 	f ′) can be written as a function oft = f ′/f . Now applying (13), we obtain that
for anyx ∈ � and	 ∈ R,

16(1− x2)4U(f − 	f ′) = A2	
2 − 4(1− x2)A1	 + 4(1− x2)2A0 > 0, (17)

where

A0 = r2 − q2 − s2 − 2q(s + 1)x− (r2 + 2s)x2,

A1 = ((s + 3)x+ q)A0 − 2(sx + q)(s + 1+ qx − x2),

A2 =A2
0 − (sx + q)((s + 6)x+ q)A0 − 4(sx + q)2(s + 1+ qx − x2).

To bound� we shall find the extreme zeros of the equation

F	(x) = A2	
2 − 4(1− x2)A1	 + 4(1− x2)2A0 = 0. (18)

Indeed, the leading term ofF	 is−4(r2+2s)x6, hence it may be positive only on a bounded
interval.
Next, we observe that optimization in	 is straightforward. Namely, viewingF	(x) as

a quadratic in	, one has to choose these	 for which the discriminant� = �(x), of this
quadratic vanishes. This yields, omitting the positive factor 16(1− x2)2,

� = A2
1 − A0A2�0. (19)

It is worth noticing that the corresponding optimal values of	, which we have no need to
find, are automatically real. The explicit expression for� has a bit surprising form,

� =
(
2(sx + q)(s + 1+ qx − x2)− 3xA0

)2 − A3
0.

Thus,� is a polynomial of degree six inxwith the positive leading coefficient,

� =
(
(r2 + 2s)3 + (3r2 + 4s)2

)
x6 + · · · .

All this can be summarized in the following claim.
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Lemma 6. Lety1 andy2, y1�y2, be the extreme zeros of the equation

�(x) = 0, (20)

then� ⊂ (y1, y2).

So far no essential restrictions are to be imposedonk, �and�, besides�,� > −1, to force
the hyperbolicity. In fact, they come to life just when one wants to find an approximation
to the zeros of (20). For small� and� the endpoints of the interval embracing� are
± (1−O(1/k2)

)
. Inequality (15) is simply not strong enough to separate them well from

±1. The discriminant surface of� in abundance of parametersmay be very complicated and
hardly allows any general treatment. Of course, asymptotics are much easier. For instance,
it may be routinely shown that for� and� growing linearly withk, the exact asymptotic
value of�j in Eq. (20) is 1. In our case Theorem 5 is an obvious corollary of the Lemma 6
and the following claim.

Lemma 7. The equation� = 0,has precisely two real zeros inD.Moreover,

�(N−1) > 0, �
(
− qs

r2

)
< 0, �(N1) > 0, (21)

andN−1 < − qs

r2
< N1, in D.

The proof of Lemma7 is quite technically involved and will be given in the next section.

Remark 1. More generally, given a hyperbolic polynomialp(	) = ∑
ai	

i , one may
consider the expressionU(

∑
ai	

i f (i)(x)), which is positive by the classical Hermite–
Poulain theorem (see e.g.[19, p. 14]). Then the bounds on� corresponding to the optimal
choice of	 are among the roots of the equationDis	U = 0, whereDis	U is the discriminant
of U in 	, that is the resultant ofU and dU

d	 .

3. Proof of Lemma 7 and Theorem 5

First of all we notice that in terms ofsandq the condition 16�� > 4�+4�+1, appearing
in the definition ofD means

q2�s2 − 3s+ 7
4. (22)

As it is also assumed��� > 1
4, thens > q�0, ands� 3

2. Solvings
2 − 3s+ 7

4�0, under
these constrains yields

s� 3+ √
2

2
, r� 27+ √

2

2
. (23)

Using this we can define the following change of variables. Letp be a polynomial in each
of the variablesr, s, q, containing only even powers ofq. Denote byL(p) the polynomial
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in variables
, s, h, obtained fromp by the substitutions

r = 2(
 + 6)+ s,

q =
√
s2(1− h)− 3s+ 7

4, 0�h�1− 12s − 7

4s2
. (24)

The substitution is real inD by (22), andk�6, just means
�0.
We split the proof of Lemma 7 into several steps. The following claim is the only part of

the proof which hardly can be established without a symbolic package, at least if one wants
to keep mild restrictions onk, � and�.

Lemma 8. The equation� = 0,has precisely two real zeros inD.

Proof. To demonstrate that equation� = 0 has only two real zeros, we calculate the
discriminantDisx(�) and show that it does not vanish inD. This implies that the number
of real zeros of� is the same for any choice of the parameters inD. Choosingr = 15, s=
3, q = 0, that isk = 6, � = � = 1, we obtain the following test equation

177755x6 − 492157x4 + 454472x2 − 139968= 0,

which has precisely two rootsx1,2 ≈ ±0.96. Mathematica gives for the sought discriminant

Disx(�) = −214(s2 − q2)6(r2 − s2)3
(
(r2 + 2s)3 + (3r2 + 4s)2

)
R3
1R2,

where

R1 = (r2 + 3s+ 2)2 − q2(r2 + 4s + 3),

andR2 is a polynomial with about 500 terms, of degree 18,17 and 12 inr, s andq respec-
tively. Moreover, it contains only even powers ofq. As q�s, we have

R1�(r2 + 3s+ 2)2 − s2(r2 + 4s + 3)= (r2 + 4s + 2)(r2 − s2 + 2s + 2) > 0.

Thus it is left to show thatR2 does not vanish inD. Applying substitutions (24), we obtain
a polynomialR(
, s, h) = L(R2), On expandingR into monomials it turns out that this
polynomial has no negative terms. Moreover, one can check thatR(0, 0, 0) > 0, hence
R > 0, inD. �

Remark 2. Of course, nothing happens if the resultantmay vanish. In this case the equation
� = 0 may have more than two real roots and one has to choose the extreme ones. For
example for� = � = 0, andk = 6 Eq. (20) has six different zeros on(−1,1).

Remark 3. To avoid the usage of resultants one may try to bound the zeros of the equation
� = 0 by the Newton–Raphson method. This approach does work in a similar problem for
the Laguerre polynomials[12]. Unfortunately, in our case this would require rather tedious
calculations (or, at least, we did not find any simple way) to establish the convexity of the
involved functions.
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To simplify otherwise messy formulas we will define the following functions:

B1(x)= 2j(sx + q)(2x2 + 1),

B2(x)= j
(
3r2x3 + 8qsx2 + (5q2 + 5s2 − 3r2)x + 2qs

)
,

C1(x)= 2x(sx + q),

C2(x)= (1− x2)r2 − 2qsx − q2 − s2.

We also put

v =
√
r2 − q2, u =

√
r2 − s2, zj = sv + jqu = r2 sin(� + j�),

εj = 2−1/3�j
( zj
vu

)4/3
r−2/3.

It is important to stress thatv, u andzj are strictly positive.Wewill use the above variables in
a somewhat mixture way, preferring shorter formulas to a clear separation between algebra
and trigonometry.
Now we can rewrite� andNj as follows,

�(x) = (B1(x)+ B2(x))
2 − (C2(x)− C1(x))

3 , (25)

Nj = − qs

r2
+ j

vu

r2
(1− εj ). (26)

First, by 0�q < s, andr = 2k + s, we have

0<
zj

vu
= s√

r2 − s2
+ j

q√
r2 − q2

<
2s√
r2 − s2

= s√
k(k + s)

.

Hence, using�j � 1
3, we obtain

0< εj < 2−1/3�j

(
s2

k(k + s)(2k + s)

)2/3

< 2−1/3�j

(
s

k + s

)4/3

k−2/3 <
1

12
.

(27)

This readily implies the last claim of Theorem5,

Lemma 9. N−1 < − qs

r2
< N1.

The following claim will be useful to simplify calculations.

Lemma 10.

B1(N−1) > 0, B1(N1) > 0, C1(N−1) > 0. (28)

Proof. This is the direct corollary of the definitions ofB(Nj ), C(Nj ) and the following
inequalities:

sN−1 + q < 0, sN1 + q > 0. (29)
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Indeed, we have

sNj + q = j
u(zj − svεj )

r2
,

hence to prove (29) it is enough to showεj <
zj
sv
. This is obviously true forj = 1, asεj < 1.

If j = −1, it also holds, since using�j < 1, (22), (23), and 3s− 7
4 > 2s, we obtain(

z−1

svε−1

)3

= 2vu4r2

s3�3−1z−1
= 2vu4(sv + qu)

s3�3−1(s
2 − q2)

>
2u6

s2(s2 − q2)
>
u6

s3
> 1. �

Now we will establish:

Lemma 11. �(− qs

r2
) < 0.

Proof. Calculations yield that�(− qs

r2
) can be written asu4 r−12D(r, s, q), whereD is

a polynomial containing only even powers ofq. Applying transformation (24) one gets a
polynomialL(D) without positive terms. �

Now we need some preparations before proving�(Nj ) > 0. One can easily check that
−1 < N−1 < N1 < 1. Therefore, we can restrictx to the interval[−1,1]. Calculations
give

r4

2vuz2j
B2(Nj ) = 1− 3(v2 + u2)r2 − z2j

2z2j
εj + (9vu− jqs)vu

2z2j
ε2j − 3v2u2

2z2j
ε3j , (30)

C1(Nj ) = u
(
sin(2� + 2j�)− 2εj cos� sin(2� + j �)+ ε2j sin 2� cos

2�
)
. (31)

(
r4

2vuz2j

)2/3

C2(Nj ) = �j
(
1− εj

2

)
. (32)

In view of (25) it is natural to set

HB
j = r4

2vuz2j

(
B1(Nj )+ B2(Nj )

)
,

HC
j =

(
r4

2vuz2j

)2/3 (
C2(Nj )− C1(Nj )

) =
(

r4

2vuz2j

)2/3

A0(Nj ).

By Lemma28,B1(Nj ) > 0, and we get

HB
j > B2(Nj ) > 1− 3(v2 + u2)r2

2z2j
εj + (9vu− jqs)vu

2z2j
ε2j − 3v2u2

2z2j
ε3j . (33)

Using the explicit form ofεj and simplifying (31), (32) we also obtain

HC
j = �j

(
1− r2 sin(2� + 2j�)

2uv2εj
− εj

2
+ r sin(2� + j�)

vu

)
. (34)
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Next, we should providemore convenient estimates forHB
j andHC

j .We givemore accurate
bounds for the casej = 1, because, as we see later and is easy to guess, they are more
important.

Lemma 12.

HB
j >



1− 34

15�−1, j = −1,

1− 10
7 �1, j = 1.

(35)

Proof. First we show

HB
j > 1− 3(v2 + u2)r2

2z21
εj . (36)

We will use the obvious abbreviation

HB
j = 1− I1εj + I2ε

2
j − I3ε

3
j .

Observe thatI2ε2j − I3ε3j > 0, that isHB
j < 1− I1εj , thus proving (36) forj = −1. Indeed,

2z2−1

vuε2−1

(
I2ε

2−1 − I3ε
3−1

)
= 9vu+ qs − 3vuε−1 > 6vu+ qs > 0.

For j = 1, we obtain byε1 < 1
3,

9vu− qs − 3vuε1 > vu− qs = r2 cos(� + �) > −r2.
Thus,

I2ε
2
1 − I3ε

3
1 > −vur

2

2z21
ε21. (37)

Next, we will show that

ε1

2
+ I2ε

2
1 − I3ε

3
1 > 0, (38)

which proves (36) forj = 1. By (37) it is enough check thatz61 − v3u3r6ε31 > 0. Since
�j �1, we have

2(z61 − v3u3r6ε31)vuz
−4
1

r2 + √
2su2

= 2vuz21 − r4

r2 + √
2su2

>
2s2u4 − r4

r2 + √
2su2

= 4
√
2 (k + s)ks − (2k + s)2

> 4(k + s)
(√

2ks − k − s
)
> 0,

by (23), and (36) follows.
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To complete the proof it is left to estimate (36). Ifj = 1, for the cube of3(v
2+u2)r2
2z21�1

ε1 we

obtain

27r4(v2 + u2)3

16v4u4(sv + qu)2
� 27r4(v2 + u2)3

16s2u4v6
� 27r4

2s2(r2 − s2)2

= 27(2k + s)4

32k2s2(k + s)2
<

(
10

7

)3

.

Similarly, for j = −1, using (22) we get

27r4(v2 + u2)3

16v4u4(sv − qu)2
� 27v2(sv + qu)2

2u4(s2 − q2)2
<

54s2v4

u4(s2 − q2)2

� 27(16k2 + 16ks+ 12s − 7)s2

8(k+ s)2(12s − 7)2k2
<

(
34

15

)3

,

giving the required estimate.�

Lemma 13.

HC
j �




�−1, j = −1,

3−1/3

2
+ 23

24
�1 − 3−2/3

4
�21, j = 1.

(39)

Proof. If j = −1, thenHC−1�C2(N1), by Lemma28, which yields the result.
For j = 1, we proceed in a straightforward manner, evaluating honestly all required

extrema.

3
(
u4v7z41r

−2
)1/3 �

��
HC

1 = J1 − J2 + J3,

where

J 3
1 = 2v2u5(vr2 + 2sz1)

3,

J 3
2 = 4r2�61u

3z51,

J 3
3 = 3r4�31uvz

4
1 cos

3 2�.

The derivative is positive since, using the extreme values ofk ands, we find

(J2/J1)
3 = 2�61r

2z51

(r2v + 2sz1)3u2v2
� 64�61s

5

(r2 − s2)r4
<

(
�21
13

)3

,

(J3/J1)
3 = 27�31r

4z41 cos
3 2�

2(2sz1 + vr2)3vu4
� 216�31s

4

(r2 − s2)2r2
< lim
s→∞

27�31s
4

2(2k3 + 3sk2 + ks2)2

� 3�31
8
.

and

31/3�1
2

+ �21
13
< 1.
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Therefore, the maximum ofHC
1 is attained for� = �, i.e.

HC
1 ��1 − 2u2 − r2

s1/3r4/3u2/3
− s4/3

u4/3r2/3
�21 + (4u2 − r2)s

u2r2
�1 := H. (40)

Similarly,

u3

s4/3r8/3

�
��

H = L1 − L2 − L3,

where

L3
1 = 1

8(9− 2 cos 3� − 3 cos 4�)3u4r−2�8u4r−2,

L3
2 = 64s5u2r−6�61,

L3
3 = 27(5 cos 2� + cos 4�)3s4r−4�31�162s4r−4�31,

(L2/L1)
3� 8s5�61

u4r4
� 2�61

k
lim
s→∞

s5

(k + s)(2k + s)4
� �61

3
,

(L3/L1)
3� 81s4�31

4u4r2
<

81�31
64k2

lim
s→∞

s4

(k + s)2(2k + s)2
� 9�31

256
.

Checking that

3−1/3�21 + 32/32−8/3�1 < 1,

for �1 < 80
81, we conclude thatHc

1 attains the maximum at the largest possible value of�.
Finally, setting

H = �1 − H1 − H2�
2
1 + H3�1,

where the terms are listed in the same order as in (40), and taking the limit we obtain

H3
1 < lim

s→∞
(r2 − 2s2)3

(r2 − s2)sr4
= − 1

4k
,

H3
2 < lim

s→∞
s4�61
u4r2

= �61
16k2

,

H3 < lim
s→∞

(3r2 − 4s2)�1
(r2 − s2)r2

= − �1
4k
,

where we substitutedr = 2k + s to find the limits. Thus,

HC
1 <max

k�6

{
(4k)−1/3 +

(
1− 1

4k

)
�1 − (4k)−2/3�21

}

= 3−1/3

2
+ 23

24
�1 − 3−2/3

4
�21,

where the maximum is attained fork = 6, provided�1 < 31
32. �
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Now it is just a matter of straightforward calculations to complete the proof of Lemma7
and thus, of Theorem 5. Substituting the bounds of (35) and (39), and the values of�j one
checks that indeedB(Nj )

2 − C(Nj )
2 > 0, and soD(Nj ) > 0.

4. Proof of Theorem 2

In the following two lemmas we collect some technical claims we use in the proof of
Theorem 2.

Lemma 14.

− q

s
∈ (N−1, N1) .

Proof. It follows from the explicit formula

�
(
− q

s

)
= −(s2 − q2)2(r2 − s2)2(u2(u2 − v2)− 9q2)s−6 < 0,

henceN−1 <
q
s
< N1. �

Lemma 15.

1−N2
j ��j z

2
j r

−4 (41)

where

�j =



3
2, j = −1,

9
7, j = 1.

Proof. We calculate

1−N2
j = z2j

r4

(
1+ 2vur2 cos(� + j�)

z2j
εj − v2u2

z2j
ε2j

)

<
z2j

r4

(
1+ 2vur2 cos(� + j�)

z2j
εj−

)
:= z2j

r4

(
1+ Sj (�,�)

)
, (42)

�
��

S3j = −4j
(2vzj + sr2)r6

uv2z4j
�3j . (43)

Hence

S1(�,�) < S1(�, 0) = �1

(
2u

sr

)2/3

<
2

7
.
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For j = −1 we have to take the maximal possible value of�, i.e.q given by (22), which
yields

S−1(�,�) < �−1

(
4s

s2 − q2

)2/3

�4�−1

(
2s

12s − 7

)2/3

<
1

2
. �

Let now

F(x) = (r + 1)2 − 2�2

1− x
− 2�2

1+ x
= (r + 1)2 − (s + q − 1)2

2(1− x)
− (s − q − 1)2

2(1+ x)

be the denominator of (10). Then to estimate the right-hand side of (10) all we have to find
is

min
N−1�x�N1

F(x).

We will put

F(x) = F1(x)+ 2s + 2qx − 1

1− x2
+ 2r + 1> F1(x),

with

F1 = r2 − (s + q)2

2(1− x)
− (s − q)2

2(1+ x)
. (44)

As

�
�x

F1 = − 2(s + qx)(q + sx)

(1− x2)2
,

thenF1 has only the local maximum atx = −q/s on [−1,1]. Thus, by Lemma (14), we
conclude that

min
N−1�x�N1

F1(x) = min {F1(N−1),F1(N1)}.

We find withεj < 1
12,

F1(Nj ) = (2− εj )u
2v2

(1−N2
j )r

2
εj >

23u2v2

12(1−N2
j )r

2
εj . (45)

Substituting this into (10) and taking into account (23) yields

N <
24e

23�
r + 1

r

r4

u2v2
max
j

{
1−N2

j

εj

}

<
78

77
max
j



(
1−N2

j

)( 2r7

uvz2j

)2/3

�−1
j


 . (46)
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In the last expression we want to get rid of the dependance onq. To that end we apply (41)
yielding

M
(
x;P(�,�)k ,

√
1− x2

)
<

78

77
max
j

{
�−1
j max

q
Tj

}
,

where

Tj =
(
2rzj
vu

)2/3

.

As one can checkTj is an increasing function inq for j = 1,and a decreasing one otherwise.
Finding the corresponding extrema we obtain

T 3−1 <
4s2r2

r2 − s2
, T 3

1 = 16s2r2

r2 − s2
.

Substituting these into (46) yields the required constant 11, with the maximum attained for
j = 1. This completes the proof of Theorem 2.
Notice that forj = −1 one obtains rather large 7.2. . . , instead of 11 for the constant,

mainly due to our careless estimates in this case. Another reason is that forj = 1 the
extremum attains in the ultraspherical case� = � versus the largest possible value of�−�
for j = −1. But the last case is again almost the ultraspherical one because of the well
known relations

(	)k
(1/2)k

P
(	−1

2 ,−
1
2)

k (2x2 − 1)= C
(	)
2k (x),

x
(	)k+1

(1/2)k+1
P
(	−1

2 ,
1
2)

k (2x2 − 1)= C
(	)
2k+1(x),

whereC(	)k (x) are Gegenbauer polynomials.

5. Asymptotics

The main aim of this section to prove Theorem 3. We split the proof into three lem-
mas which exploit some known limiting relation between Jacobi, Hermite and Laguerre
polynomials. All norms appearing in the sequel are the standard weightedL2 norms of the
corresponding polynomials [20]. We will use the sign≈ to indicate an asymptotic equality
with a multiplicative 1+ o(1) constant. Let us also remind that regular letters indicate the
standard normalization.

Lemma 16. Let k be fixed,� and� = (1−�)�, sufficiently large,with� = o
(
�−1/2

)
.Then

M
(
P(�,�)k ,

√
1− x2

)
�C

√
� k−1/6,

where the constantC ∈ [C1, C2], withC1, C2 defined in(12).
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Proof. As we want to deviate from the pure ultraspherical case, we apply a recently estab-
lished limiting relation between Jacobi and Hermite polynomials[3],

lim
s→∞ P

(�,�)
k

(√
2s − 2x + q

s + 1

)
s−k/2 = Hk(x)

23k/2k! , q/s → 0. (47)

By � = (1− �)�, with � = o
(
�−1/2

)
, we have for sufficiently large�,

y =
√
2s − 2x + q

s + 1
≈ x√

�
,

and

(1− y)�+1/2(1+ y)�+1/2 ≈ e−x2.

Then, by (47), we obtain,

1

23kk!2 max
x

{
(1− y)�+1/2(1+ y)�+1/2 (Hk(x))

2
}

≈ 1

4kk! max
x

{
(Hk(x))2 e−x

2
}

≈ M
(
P(�,�)k (x),

√
1− x2

) ∥∥∥P (�,�)k

∥∥∥2 s−k.
Applying (12) and Stirling’s approximation for the norm of the Jacobi polynomials, we
obtain

M
(
P(�,�)k (x),

√
1− x2

)
≈ C

k−1/6sk

22kk!
∥∥∥P (�,�)k

∥∥∥2 < C
√

�
�
k−1/6, (48)

where we can takeC1 < C < C2, with C1, C2 defined in (12). This completes the
proof. �

Remark 4. The assumption� = � − o (�−1/2
)
, is made to avoid well-known messy tech-

nicalities in approximations of binomial coefficients. It is interesting to see what constant
would be obtained in (48) if we were allowed to substitute forC its limiting value with
k → ∞. The asymptotic for Hermite case is well known [20] and yieldsC about 0.5.

Remark 5. The meaning of limiting relations in our case is that the standard differential
equation (16) for Jacobi polynomials is just a perturbation of the corresponding Hermite
one. As, possessing uniform bounds, one can readily estimate the difference between the
solutions, a quantitative version of (47) is available. This enables one to allowk slowly
growing with�. Whereas to obtain whatever bound of this type is an easy task, to provide
a good one seems a difficult problem and we are not aware of any result in this direction.
Apparently less formal reason for limiting relations is that in a certain range of parameters
the zeros of one polynomial interlace with these of another. But, as far as we know, this has
never been properly established.
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Lemma 17. For large� andk, k 
 �, and� fixed,

M
(
P(�,�)k ,

√
1− x2

)
∼ √

�k−1/6.

Proof. Now we consider a limiting relations between Jacobi and Laguerre polynomials
L
(�)
k .

lim
�→∞ P

(�,�)
k

(
2x

�
− 1

)
= (−1)kL(�)k (x). (49)

As in theproof of Lemma16weobtain the following relationbetween two (in fact, unknown)
maxima.

M
(
P(�,�)k ,

√
1− x2

) ∥∥∥P (�,�)k

∥∥∥2 ≈ 2�+�+1��− 1
2M

(
L (�)k ,

√
x
) ∥∥∥L(�)k ∥∥∥2 .

On getting rid of gamma functions, we obtain for large� and fixed� andk,

√
�M

(
L (�)k ,

√
x
)

≈ M
(
P(�,�)k ,

√
1− x2

)
. (50)

We allow growingk, which can be routinely justified (see Remark5), and take a classical
Szegö result [20, Theorem 8.91.1], saying in the orthonormal case withk → ∞, and�
fixed,

M
(
L (�)k ,

√
x
)

∼ k−1/6.

This completes the proof of the lemma as well as Theorem3. �

Very few explicit upper bounds are known for Laguerre polynomials, best of which is
probably the classical one due to Szegö (see e.g. [1]; a sharper inequality given in [18] is
not explicit and hardly could be used),(

L (�)k (x)
)2

� ex

�(� + 1)
, x, ��0. (51)

Unfortunately, because of the extra
√
x we have to restrictx first to the oscillatory re-

gion which gives a weak estimate. On the other hand, if our Conjecture1 is true, or any
other sharper bounds would be found, this automatically yields an estimate of the Laguerre
polynomials.

Lemma 18.

M
(
L (�)k ,

√
x
)
<
(4k2 + 4�k + 2� + 2)�+ 1

2

�(� + 1)
. (52)

Proof. We just repeat a simple part of arguments of Section2 for the Laguerre case in order
to make a full use of Szegö’ inequality (51). We need an upper bound on the location of the

relative maxima ofe−xx�+1
2 . In the absence of an analogue of (10), it makes no sense to
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seek estimates as precise as (5) (in fact, this time it is much easier, as we have one parameter
less, see [12]). We assumex�0. Applying Laguerre inequality (14) (no	 this time) and
excluding higher derivatives by the differential equation

xy′′ + (� + 1− x)y′ + k(k + �)y = 0, y = L
(�)
k ,

one obtains

y−2
(
k(k + �)y2 + (� + 1− x)yy′ + xy′2) > 0,

or, introducing the logarithmic derivativet (x) = y′/y,

k(k + �)+ (� + 1− x)t + xt2 > 0. (53)

From the condition

d

dx

(
e−xx�+1/2y2

)
= 0,

we get

t (x) = 2x − 2� − 1

4x
.

Substituting this into (14) yields

−4x2 + 8(2k2 + 2�k + � + 1)x− (2� + 1)(2� + 3) > 0.

The greater root of this quadratic is less than 4k2 + 4ak + 2a + 2, and this is the sought,
even, as on can check, asymptotically sharp bound on the location of the last maximum.
Now the result follows from (51). �

Finally, the inequality (9) of Theorem 8 is an immediate corollary of (50) and (52).

Remark 6. Using in a similar way a limiting relation in the Askey scheme between two
polynomialspk andqk [3,6,16], and assuming thatM(pk,�) is known, one can readily
deduce some information onM(qk,�

∗). Moreover,�∗ is uniquely defined by the limiting
relations and the choice of� for pk, as a result of our convention to keep the same auxiliary
function for the entire family. Thus, starting with, e.g. Jacobi polynomials, one can apply
exact bounds, asymptotics or inequalities to obtain something (and maybe guess the true
order), say, for Wilson, Hahn or continuous Hahn polynomials.

More accurate calculations in Lemma 16, without the restriction� = � − o
(
�−1/2

)
, as

well as some numerical evidences, suggest the following conjecture, which, if true, would

reduce estimates ofM
(
P(�,�)k ,

√
1− x2

)
to much easier ultraspherical case.

Conjecture 2. M
(
P(�,�)k (x),

√
1− x2

)
is an increasing function in� for ��� > −1

2.
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