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Abstract

Aremarkable inequality, with utterly explicit constants, established by Erdélyi, Magnus, and Nevai,
states that fox > ff > — % the orthonormal Jacobi polynomiail’é“‘ﬁ) (x) satisfy

max {(1 — ) 214 )2 (P (x))z} = 0()

[x[<1

[Erdélyi et al., Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials, SIAM J.
Math. Anal. 25 (1994), 602—614]. They conjectured that the real order of the maximaiiaig?).

Here we will make half a way towards this conjecture by proving a new inequality which improves
their result by a factor of ordet + %)‘1/3. We also confirm the conjecture, even in a stronger form,
in some limiting cases.

© 2005 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we will use bold letters for orthonormal polynomials versus regular charac-
ters for orthogonal polynomials in the standard normalizgito20].

Let px be an orthonormal polynomial, of degreek, orthogonal with respect to a non-
negative weight functioi’, supported on finite or infinite interval(we deal exceptionally
with the classical case). Let alggx) be a given auxiliary function nonnegative prin this
paper¢(x) will be chosen depending only on a specific family of polynomials in the Askey
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scheme, e.g we set = +/1— x2 and \/x, for all Jacobi and all Laguerre polynomials
respectively. We define the following functions

M(x; pr, §) = W(x)p(x)p2(x), 1)
and the functional
M(pi, ) = rng{M(x; Pr. §)} . @)

Thus, for the Jacobi case we have

2
M ( P,((“’ﬁ), n_ .2 x2> —  max {(1 — )21 4 x)PtL/2 (Plia,m(x)) } .

—1<x<1

The origin of the functionp is, of course, the Szeg6 theory and its extensions stating
that for a wide class of polynomials orthonormal [erl, 1] andk — oo, the expression
(1 — x»Y4wl/2p; mimics in a sense the behaviour of the Chebyshev polynorfijals
equioscillating between-,/2/x, [17,20]. Similar results probably hold for many other
families, including classical discrete polynomials. The deepest statement in this direction
asserts that for exponential weighis = ¢~<, under some not too restrictive, but rather
technical conditions,

max{W |(x —a_o)(x — a0 [V2pio | < €., ®3)

with C independent ort, anday; being the Mhaskar—Rahmanov—Saff humbersQor
[13-15]. Yet the real reason for such a behaviour is probably hidden notin weights but rather
in much poorly understood properties of the coefficients of the three term recurrence.
Whereas many inequalities omt are known for classical orthogonal polynomials for
properly restricted parameters (see e.g. [1,2,5] and the references therein), the main problem
we are trying to deal with is to estimatel uniformly for the entire family. That is, bringing
the Jacobi case as an example, to supply tight bounds unifdenviandf. An astonishing
fact is that this is sometimes possible under marginal restrictions on the parameters. Yet,
the only known examples, putting aside asymptotics, are the Hermite polynomials with just
one parametek involved [9] (see (12) below), and the following remarkable inequality,
established by Erdélyi et al. [2],

Theorem 1.

M(PHP VT32) <2€ <2+ mﬁz), (4)

T

providedk >0, anda, 8 > —3.

A surprising independence dain (4) is probably an artefact and restored in sharper
bounds by the customary multiplier1/6. They also conjectured that (4) can be tighten to

(74 )"
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In this paper we will improve (4) and provide some evidences that the real order of
M ( P,(f’ﬁ), Vi1- x2) is /o k~1/6, with o> . We will use a method suggested in [7],
which, at least in principal, can be adapted for orthogonal polynomials with known second
order differential or difference equations. Moreover, it seems that the only real obstacle
for getting explicit asymptotically sharp estimates in most of the cases is extremely messy
calculations needed to bound zeroes of multivariable polynomials. As a matter of fact, our
proof is quite similar to that of [2]. We just replaced the Christoffel function by a “Laguerre”
one (14). The last has a similar partial fraction expansion, but allows much more refined
estimates.

Our main result is:

Theorem 2.
1/3
+ B+ 1?2k + o+ f+ 1)?
pebh 12 <11 (o , 5
M(k ’ x) Bk + o+ f+ 1) ®)
provided the parameters @If{“‘ﬁ) (x) are in the regiorD defined by
k=6, oa>=f>3 16uf>du+4p+ 1. (6)
In particular, (5) holds for
1 2
k=6, a=p> +4“/_. (7)

Despite the attractive numbers, appearance of the r@gisiowing rather to our attempts
to find a compromise between precision and the amount of calculations required.
We also confirm the conjecture in some limiting cases.

Theorem 3. (i) There is an absolute constant C such that for a fixed k and sufficiently large
candp = (1— d)a, with 6 = o (x~Y/2),

M (P}j‘”‘), Vi- x2> N @8)

Moreover, ) holds,yet with C depending on k arff] if k — o0, « — 00, k < o, and f8
is fixed.
(i) For fixed k ands,

2 p+3i
. ~1/2 (@.p) — (4k“ + 4k + 2 +2)P"2
aILmOO o M (Pk ,V1-—x ) < TG+ D) =0(1). (9)

In fact, at the cost of some routine calculations, the last theorem may be restated in a
non-asymptotic version. Yet, it is worth noticing that the dependenéeaonff in (9) is an
artefact reflecting rather the lack of sharp bounds for the Laguerre polynomials used in the
proof than the real behaviour g#1.

Apparently, Theorem 2 and (8) make quite plausible the following refinement of the
Erdélyi, Magnus and Nevai conjecture,
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Conjecture 1. The exponen} in (5) can be replaced by.

To simplify formulas in the sequel it will be convenient to use the following set of
variables,

s=oa+p+1, g=a—p, r=2k+a+f+1,

and their trigonometric counterparts
. . T
g=rsinmw, s=rsint, 0<w, 7< >

For example the right-hand side in (5) is now written as

23232 — s 713 = 2B qarf3 1.

SinceP,E“’ﬁ) (x) = (=1) P,({ﬁ’“)(—x), we may assume > f3, therefore everywhere in the
sequely >0, and < w < 1. We also introduce the binary variable {—1, 1}. As we will
see, in many respecig, s andr are more natural parameters thar andf. At least they
allow to shrink many otherwise awful expressions to a reasonable size.

The idea behind the proof of Theorehis very simple, but requires a substantial amount
of calculations which hardly can be done without an appropriate symbolic package. We
used Mathematica.

The following pointwise estimate oW (x; P,E“'/}), V11— x2> in the oscillatory region

was given in [2].

Theorem 4. Letk >1,and«, > —%. Thenfor-1 < x <1,

2e r(r+1)
M : P(%’ﬁ), 1 42 < _ s 10
(P ?) <2 (r+ 12— 222/(1—x) — 25/ (L+ x) —

2
provided the denominatar + 1)% — f—fi — lz—fx is positive.

Theorem?2 is an easy corollary of (10) and the following claim.

Theorem 5. All local maxima of the functio (x; P,((“’ﬁ), V11— x2) are in the interval
(N_1, N1), where

2 COSt COSm

i . 1/3
Nj =] (COS(‘L’ +jw) —0; (w) r_2/3> ’

and

0y = (12)
3 .
i 1 =1,

provided the parameteils « andf; are inD.
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The bounds given in the last theorem are very precise up to the valugs Tiis is
so because the same expression with two-side bounds on the corresponding cépstants
(up to some minor higher order terms) has been obtained for the extreme zeros of Jacobi
polynomials[8,10]. Therefore, any improvement of (10) would lead to the corresponding
improvement of (5).

Having at hand uniform bounds, we may exploit some limiting relations between or-
thogonal polynomials in the Askey scheme [3,6] to prove Theorem 3. Uniform bounds
for the Hermite polynomials were recently obtained by a method similar to that of this

paper [9],
C1 < M (H, 1) kY8 < ¢, (12)

whereCy ~ 3, C2is a constant, e.g. one can takg= 10, fork >2000, orC; = 10°, for
k >6. Yet, in the Hermite case we could use very precise inequalitif$,ofvhereas (10)
seems rather poor in the relevant oscillatory region.

The paper is organized as follows. The next two sections deal with the proof of Theorem 5.
In Section 2 we reduce the problem to bounding extreme zeros of a six degree polynomial
in x being as well a polynomial in parametersfp andk. The required bounds will be
established in a quite technical Section 3. In Section 4 we will deduce Theorem 2 from
Theorem 5. A simple proof of Theorem 3 is given in Section 5.

2. Main inequality

Let us stress that in what followsis restricted td—1, 1].

The arguments we will present here are rather general and make no use of orthogonality.
All that we need is a second order differential equation with a solution being a hyperbolic
polynomial, that is a real polynomial with only real zeros, or a uniform limit of such
polynomials.

Let f = f(x) = P,((“’ﬁ)(x). Notice that in the sequel we use dash only for derivatives in
x. We introduce the logarithmic derivative= 7 (x) = f’(x)/f (x). Let alsoQ = Q (o, )
be the set ok corresponding to the local maxima of

M (5 PP VI 32),

in x, for given values of:, f andk.
From the equation

i M <x; P]((“’m, m> =0,

dx
we get

SX +¢q

t(x) = 2022’

x € Q. (13)
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Our maintoolin bounding the extreme point€bivill be the following elementary Laguerre
inequality,

2 /" k
PP = po)p"(x) 1
U(p(x) = ) = §=1ﬁ il (14)

wherep(x) = ¢ ]_[f.‘:1 (x — x;), is a hyperbolic polynomial. Notice thatfis hyperbolic
thenp — Ap’ is also hyperbolic for any redl Thus, we get

U(f—Af') > 0. (15)

We have to calculate this expression explicitly. For, we observe that using the standard
differential equation for Jacobi polynomials,

A=xDf" =@—P+@+p+2x0)f —kk+o+p+1)f, (16)

in a pure algebraic manner one can exclude all the derivativé®fobrder greater than
one, when such appear. Moreover f — /f') 2 is a quadratic form irf and f’. Hence
U(f — 2f") can be written as a function of= f’/f. Now applying (13), we obtain that
foranyx € Qand/ € R,

16(1— xD*U(f — Af) = A22? — 41 — x®) A1/ + 4(1 — x%)?Ag > 0, (17)
where

Ao=r%— g% — 52 = 2q(s + D)x — (r® 4 25)x?,

A1=((s +3)x + g)Ao — 2(sx + ¢)(s + 1+ gx — x?),

Ap = A3 — (sx + q)((s + 6)x + q) Ao — 4(sx + ¢)%(s + 1+ gx — x?).

To boundQ we shall find the extreme zeros of the equation
Fy(x) = A2/% — 4(1 — xO) A1) + 4(1 — x2)%A0 = 0. (18)

Indeed, the leading term &, is —4(r 4+ 25)x5, hence it may be positive only on a bounded
interval.

Next, we observe that optimization iis straightforward. Namely, viewing’; (x) as
a quadratic inl, one has to choose thegdor which the discriminanA = A(x), of this
quadratic vanishes. This yields, omitting the positive factor 16¢#)?,

A= A% — AgA,<0. (19)
1

It is worth noticing that the corresponding optimal values. ofvhich we have no need to
find, are automatically real. The explicit expressionAdnas a bit surprising form,

2
A= (2(sx +¢)s+14+gx — xz) — 3on) - Ag.

Thus,A is a polynomial of degree six with the positive leading coefficient,
A= ((r2 +25)% + (3% + 4s)2) x4

All this can be summarized in the following claim.
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Lemma 6. Lety1 andy», y1 < y2, be the extreme zeros of the equation
A(x) =0, (20)
thenQ C (y1, y2).

So far no essential restrictions are to be imposed arandf, besides, f > —1, to force
the hyperbolicity. In fact, they come to life just when one wants to find an approximation
to the zeros of (20). For smadl and § the endpoints of the interval embraci6yare
+ (1 — 0(1/k2)). Inequality (15) is simply not strong enough to separate them well from
+1. The discriminant surface dfin abundance of parameters may be very complicated and
hardly allows any general treatment. Of course, asymptotics are much easier. For instance,
it may be routinely shown that far and § growing linearly withk, the exact asymptotic
value off)j in Eq. (20) is 1. In our case Theorem 5 is an obvious corollary of the Lemma 6
and the following claim.

Lemma 7. The equatiom\ = 0, has precisely two real zeros . Moreover,

qs

A(N_1) > 0, A( r2> <0, ANy >0, (21)

andN_; < — % < N1,inD.

The proof of Lemm& is quite technically involved and will be given in the next section.

Remark 1. More generally, given a hyperbolic polynomial4) = > a;)!, one may
consider the expressiori(3" a; ' f@(x)), which is positive by the classical Hermite—
Poulain theorem (see e[d.9, p. 14]). Then the bounds &&corresponding to the optimal
choice of2 are among the roots of the equatdis, U = 0, whereDis, U is the discriminant
of Uin 4, that is the resultant df and‘fj—l;{.

3. Proof of Lemma 7 and Theorem 5

First of all we notice that in terms sfandq the condition 16/ > 4o+ 4+ 1, appearing
in the definition ofD means

g°<s®—3s+ L. (22)

Asitis also assumed> 8 > 7, thens > ¢ >0, ands > 3. Solvings? — 3s + £ >0, under
these constrains yields

>3+J§’ . 27+ fz.
2 2

Using this we can define the following change of variables.dle¢ a polynomial in each

of the variables, s, ¢, containing only even powers gf Denote byL(p) the polynomial

(23)

N
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in variablesk, s, h, obtained fronp by the substitutions
r=2(k+ 6)+s,
g=\/s21—Ih) =35+ 7. 0<h<l-

12 — 7
452

(24)

The substitution is real ifv by (22), andk > 6, just means > 0.

We split the proof of Lemma 7 into several steps. The following claim is the only part of
the proof which hardly can be established without a symbolic package, at least if one wants
to keep mild restrictions oh, o and .

Lemma 8. The equatiom\ = 0, has precisely two real zeros .

Proof. To demonstrate that equatiah = O has only two real zeros, we calculate the
discriminantDis, (A) and show that it does not vanish?n This implies that the number
of real zeros ofA is the same for any choice of the parameter®itChoosing: = 15, s =

3, ¢ =0, thatisk = 6, o« = f = 1, we obtain the following test equation

1777558 — 4921574 + 4544722 — 139968= 0,

which has precisely two roois > ~ +0.96. Mathematica gives for the sought discriminant
Dis, (A) = —24(s% = g2°(% = s (2 + 20)° + (3% + 49)%) R} Ry,

where
Ri=(r’+35+2°2—q¢°(r° +4s +3),

andR is a polynomial with about 500 terms, of degree 18and 12 irr, s andq respec-
tively. Moreover, it contains only even powersqfAs g <s, we have

Ri>(02 435422522+ 45 4+3)= (r2+4s + 2)(r2 — 2+ 25+ 2) > 0.

Thus it is left to show thaRk, does not vanish i>. Applying substitutions (24), we obtain
a polynomialR(x, s, h) = L(R2), On expandingR into monomials it turns out that this
polynomial has no negative terms. Moreover, one can checkiig@to, 0) > 0, hence
R>0,inD. O

Remark 2. Of course, nothing happens if the resultant may vanish. In this case the equation
A = 0 may have more than two real roots and one has to choose the extreme ones. For
example forx = § = 0, andk = 6 Eq. (20) has six different zeros ¢r 1, 1).

Remark 3. To avoid the usage of resultants one may try to bound the zeros of the equation
A = 0 by the Newton—Raphson method. This approach does work in a similar problem for
the Laguerre polynomiald2]. Unfortunately, in our case this would require rather tedious
calculations (or, at least, we did not find any simple way) to establish the convexity of the
involved functions.
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To simplify otherwise messy formulas we will define the following functions:
Bi(x) =2j(sx +¢)(22 + 1),
Bo(x) =] (3r2x3 + 8qsx2 + (54]2 +552 — 3rd)x + 2qs> ,
Ci1(x) =2x(sx +q),
Cox)=(1-— )cz)r2 — 2qsx — q2 — 2.

We also put

=Jr2—q2 u=+r2—s2 z=sv+jqu =r?sin(t +jo),
L\ 4/3

8j=2_1/30j (Z—J) r2/8,
vu

Itis important to stress that « andz; are strictly positive. We will use the above variablesin
a somewhat mixture way, preferring shorter formulas to a clear separation between algebra
and trigonometry.

Now we can rewriteA andN; as follows,

A(x) = (B1(x) + B2(x))2 — (Ca(x) — C1(x))3, (25)
N=—L i a-e. (26)

First, by 0<q < s, andr = 2k + s, we have
0 s q 2s s
< — = = .
v 22 \/rz—q \/rz—s2 Vkk +5)

Hence, using); < 3, we obtain

2 2/3 ¢ \48 1
0<g < 2_1/30j - < 2_1/39j k28 < =,
k(k + s)(2k + s) k+s 12

(27)

This readily implies the last claim of Theoresn
Lemma 9. N_1 < —% < N1.
The following claim will be useful to simplify calculations.

Lemma 10.

B1(N_1) >0, B1(N1) >0, Ci1(N_p) > 0. (28)

Proof. This is the direct corollary of the definitions &f(Nj), C(Nj) and the following
inequalities:

sN_1+¢qg <0, sNi+gq >0. (29)
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Indeed, we have
 u(zj — svej)
S]V]- + q — J %,
r
hence to prove (29) itis enough to sheyw< % This is obviously true fofy = 1, asgj < 1.
If j = —1, it also holds, since using < 1, (22), (23), and 3s- % > 25, we obtain
< 71 )3 _ 2vur? _ 2vu*(sv +qu) 2ub ub

= = > > — > 1. O
s39?ilz,1 ss€?ll(s2 —q?)  s%(s?2—q%  s3

SVE_1
Now we will establish:

Lemma 11. A(— %) < 0.

Proof. Calculations yield that\(— %) can be written ag*r~12D(r, s, q), whereD is
a polynomial containing only even powersg@fApplying transformation (24) one gets a
polynomial £(D) without positive terms. [

Now we need some preparations before provkig/j) > 0. One can easily check that
—1 < N_1 < N1 < 1. Therefore, we can restrigtto the interval[—1, 1]. Calculations
give

ré 3%+ u?)r? — ij Quu —jgs)vu ,  3%u? 4
8. p—

——Ba(N)) =1- g + e, (30)

2vuzJ 2212 2ZJ-2 J 2212 J

Ci(N)) =u (sin(27: + 2jw) — 26 COSWSIN (21 + ] w) + &7 sin 2t coS’ w) . (31)

r4 23 &j
( zmjz) Ca(N) =05 (1- 7). (32)
In view of (25) it is natural to set
HP = ZU;Z (B1(Nj) + Ba(N)))
. 4 \%3 4\
H = <2UMZJ-2> (C2(N)) — C1(Ny)) = (Tuzﬁ) Ao(Nj).

By Lemmaz28, B1(Nj) > 0, and we get

3 2 2y,.2 9 i 3 2.2
_ (v +2u ) , (Qvu qus)vu <9j2 3 ;t 8j3- (33)

Using the explicit form ok; and simplifying (31), (32) we also obtain

r2sin(2t+2jw) & rsin2t+jow)
HC =0 (1- ————— -1 2= 7).
! ! < 2uv? 2 * vu )

HjB > Ba(Nj) > 1

(34)
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Next, we should provide more convenient estimatesl—)férandl—ljc. We give more accurate
bounds for the casg = 1, because, as we see later and is easy to guess, they are more
important.

Lemma 12.

1 - %0717 ] = _17
HE > (35)
J 10 i

Proof. First we show

302 + u2)r2
gE -1 SO (36)
2z
We will use the obvious abbreviation
HP = 1— Iej + el — Iz,
Observe thalzej2 — [38j3 > 0, thatisH” < 1— L, thus proving (36) fof = —1. Indeed,

222,

2
vues |

(12531 — [3831) = Qvu + gs — 3vue_1 > 6vu+ gs > 0.

Forj = 1, we obtain by < 2,

9uu — gs — 3vuey > vu — gs = r?cos(t + w) > —r2.

Thus,

2
vur
Ipe? — I3ed > —— &2, (37)
2Z1

Next, we will show that
8—21 + Ipe? — I3e3 > 0, (38)

which proves (36) foj = 1. By (37) it is enough check thaf — v343r%3 > 0. Since
0; <1, we have
2(z8 - v3u3r68i’)vuzl_4 2vuzg —rt 2s2u — r#
r2 + /2 su? =r2+\/§su2 ” r2 4+ /2 su?
=4V2(k + s)ks — (2k +5)?
> 4k + 5) (Jéks—k—s) >0,

by (23), and (36) follows.
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To complete the proof it is left to estimate (36)j K= 1, for the cube 0%81 we
obtain '
2742 + u?)3 - 274 (v2 + u?)® 27/
16v*u4(sv + qu)? = 1652u*8 T 252(r2 — 52)2
27(2% + 5)* 10\3
= 32%252(k + )2 = <7> '
Similarly, forj = —1, using (22) we get
27402 + u?)3 < 270 (sv + qu)? - 54524
161 u4(sv — qu)? = 2uA(s?2 — q2)2 u(s2 — g2)2
27(16R + 16ks + 125 — 7)s? 34\3
S T8kt 9212 — 722 (1_5) ’
giving the required estimate.[]

Lemma 13.
0717 J = _1’

c
Hj

/N

3-1/3 93 323 (39)
S R =1

Proof. If j = —1, thenH, <C2(N1), by Lemma28, which yields the result.
Forj = 1, we proceed in a straightforward manner, evaluating honestly all required
extrema.

3 (u4v7zilr_2>l/3 ﬁ lC =J1—Jo+ J3,
0w
where
J2 =202 wr? + 2521)3,
73 = 4r205u323,
J3= 3r*03uvz} cos 2t.

The derivative is positive since, using the extreme valudsanfds, we find

6 6 2\ 3
(J2/ 1) = 207y 6401° (4
(r2v + 2571)3u2v2 = (r2 — s2)r4 13)
Uaf )R = 2703474 cos* 2 21603s5% —im 27035%
22571 + vr2)3vu? T (r2 — 52)2r2 T s—o0 2(2k3 4 3s5k2 + ks2)2
303
< —=.
8
and
339, 02

2 +1—3<1




I. Krasikov / Journal of Approximation Theory 136 (2005) 1-20 13

Therefore, the maximum af{ is attained fow = t, i.e.

2u? — r? s43 > (4142 — r2)s

_ - 0 01:=H. 40
(173,473,253 43231 T T 2,3 1 (40)

Hf <01

Similarly,

ud 0
s4/3—r8/3&H:L1_L2_L3’
where
L}=3%(9—2cos3 —3cos4)%utr2>8u"r 2,
Lg = 64ssu2r_696,
L3=27(5c0s 2 + cos 4)3s* 403 <1624 463,

(La/L1)3< 8507 207 s 4
2RSS S (k+5)(2k+9)4 S 37

—5 1Im S
402 T Bak2 500 (k+5)2(2k + 5)2 256
Checking that
371392 4 3%/3278/3); < 1,

for 01 < g—g, we conclude thatf; attains the maximum at the largest possible value. of
Finally, setting

H=01—Hi— 7—[29% + Hz01,

where the terms are listed in the same order as in (40), and taking the limit we obtain

W< lim =2 L
< ——— = — —,
175 (r2 = s2)srt 4k
496 06
13 < tim 2= A

s—oo uhr2  16k2°

. (3r2 — 4s2)01 _ 01
Ha < lemOO r2—sr2 4k

where we substituted = 2k + s to find the limits. Thus,
1

HE 45173 1- — — (421392

1 <Q1§é<{( k) S+ 2 ) 01— @Ry

gYe 23, 37
=2 T2
where the maximum is attained fbr= 6, providedd; < % O

92
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Now it is just a matter of straightforward calculations to complete the proof of Lefhma
and thus, of Theorem 5. Substituting the bounds of (35) and (39), and the vali)jesnef
checks that indee#(N;)? — C(Nj)? > 0, and saD(Nj) > 0.

4. Proof of Theorem 2

In the following two lemmas we collect some technical claims we use in the proof of
Theorem 2.

Lemma 14.
- % € (N_1. Ny).
Proof. It follows from the explicit formula
A (_ %) = _(52 - q2)2(r2 - SZ)Z(MZ(MZ - v2) — 9(]2)s_6 <0,

henceN_1 <% < N;. O

Lemma 15.
1- NP<pyzfr™ (41)
where
3 i=-1
pj = o .
5 = 1.

Proof. We calculate

2 2 i 2,2
Z 2 cos
1—Nj2=—14<1+ vur 2(‘E+Jw)8j_vL2‘ 8j2>
r Zj Zj
zZ 2vur? cos(t + jw) g
4 <1+ SCHO ) 2 (1 5 w). (42)
ZJ’ r
0 . (2uzj + sr2)rb 3
g3 g AT s 43
ow ! ) uvzzj4 ! )
Hence

u\?® 2
Si(t, ) < Si(t,0) = 91< ”) <Z.

Sr
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Forj = —1 we have to take the maximal possible valuexfi.e. q given by @2), which
yields

4s
S_1(t,w) <01 m

Let now

23 4
<40_1 2 < =. (]
125 — 7 2

2;“2 2_/32=(r+1)2_(s+q—1)2_(s—q—l)z

— 2_ —
F)=0+D%= = - 77— 21—x) 21+ x)

be the denominator of (10). Then to estimate the right-hand side of (10) all we have to find
is

min  F(x).
N_1<x<M

We will put

2s +2gx — 1

Fo) =R+ =

+2r + 1> Fi(x),

with

G+ 9* 5 —9)?
20-x) 2(1+x)

F1=r? (44)

As

0 5 25490 +s0)

ax ot (1— 22?2
thenF7 has only the local maximum at= —q/s on[—1, 1]. Thus, by Lemma (14), we
conclude that

)

min  Fi(x) = min{F1(N_1), F1(N1)}.

N_1<x< N
We find withej < 5,

2- Sj)uzvz 23102
g > &j.
(1- N?)r? ' 11— N2)r2 !

F1(Nj) = (45)

Substituting this into (10) and taking into account (23) yields
24e r+1 r* {1—1\712}
ax
i

N

< S —
23t r  u?? €]

78 27\
1o AN i -1
=77 mjax{<1 Nj ) <uvz.2) 01 } ’ (46)

J
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In the last expression we want to get rid of the dependance ©o that end we apply (41)
yielding

78
M (x; P,(f’ﬂ), \/l—x2> <= m_ax{(ijl max T } ,
i q

where

27\ 2/3
n=(22)
vu

As one can check; is anincreasing function inforj = 1, and a decreasing one otherwise.
Finding the corresponding extrema we obtain
4522 3 1652r2

, I = —5—.
2 _ (2 17,2 32

re—=s

Substituting these into (46) yields the required constant 11, with the maximum attained for
j = 1. This completes the proof of Theorem 2.

Notice that forj = —1 one obtains rather large 7.2, instead of 11 for the constant,
mainly due to our careless estimates in this case. Another reason is thatfot the
extremum attains in the ultraspherical case f versus the largest possible valuexcf 5
for j = —1. But the last case is again almost the ultraspherical one because of the well
known relations

Dk 0—3.-3)
1/ *
o P Pa—%,%>
(1/k41 *

WhereC,E)“) (x) are Gegenbauer polynomials.

2x2 — 1) = 5 (x),

@2 — 1) = Ci 4 (),

5. Asymptotics

The main aim of this section to prove Theorem 3. We split the proof into three lem-
mas which exploit some known limiting relation between Jacobi, Hermite and Laguerre
polynomials. All norms appearing in the sequel are the standard weightedrms of the
corresponding polynomials [20]. We will use the sigrio indicate an asymptotic equality
with a multiplicative 14+ o(1) constant. Let us also remind that regular letters indicate the
standard normalization.

Lemma 16. Letk be fixedy andf = (1— )« sufficiently largewith § = o («=1/2). Then

M(PEP. V1= x2) <cvak e,

where the constar@ € [Cy, C2], with C1, C defined in(12).
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Proof. As we want to deviate from the pure ultraspherical case, we apply a recently estab-
lished limiting relation between Jacobi and Hermite polynonii]s

@p (VB =20 +q) ko H)
Sll)moo P <s—}——1 23](/2](' C[/S — 0. (47)

By = (1— &), with & = o («~1/2), we have for sufficiently large,

\/2s—2x—l—q X
s+l S

and
(1- y)a-‘rl/Z(l + y)ﬂ+1/2 ~e
Then, by (47), we obtain,

1
s max{ (@ — AL+ )R (H 00

% max{ (Hi(0)2e ™}

~ M (P,(:(’ﬁ) (x), \/H) H Pk(a’/j) stfk

Applying (12) and Stirling’s approximation for the norm of the Jacobi polynomials, we
obtain

1/6 k A
<P(9‘ ﬁ) ()C) /1 ) ~C——mM8M — < C\/gk_l/s, (48)

22k 1 H P(Of N H

where we can tak&€; < C < Cp, with C1, C2 defined in (12). This completes the
proof. [J

Remark 4. The assumptioff = « — o (oc‘l/z), is made to avoid well-known messy tech-
nicalities in approximations of binomial coefficients. It is interesting to see what constant
would be obtained in (48) if we were allowed to substitute @oits limiting value with

k — oo. The asymptotic for Hermite case is well known [20] and yielosbout 05.

Remark 5. The meaning of limiting relations in our case is that the standard differential
equation (16) for Jacobi polynomials is just a perturbation of the corresponding Hermite
one. As, possessing uniform bounds, one can readily estimate the difference between the
solutions, a quantitative version of (47) is available. This enables one to klidawly
growing witho. Whereas to obtain whatever bound of this type is an easy task, to provide
a good one seems a difficult problem and we are not aware of any result in this direction.
Apparently less formal reason for limiting relations is that in a certain range of parameters
the zeros of one polynomial interlace with these of another. But, as far as we know, this has
never been properly established.
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Lemma 17. For large « andk, k <« o, and f; fixed,
M (P,E“”‘), Vi- x2> ~ Jak=8,

Proof. Now we consider a limiting relations between Jacobi and Laguerre polynomials
(o)

L.
k

oU—> 00

lim PP (% - 1) = 1 LP ). (49)

Asinthe proof of Lemma6 we obtain the following relation between two (in fact, unknown)
maxima.

M (P,E“’m, m) H P,f“”‘) HZ - 21+[f+10£/5—% M (LI<€/5>7 \/;> H L}({ﬁ) Hz

On getting rid of gamma functions, we obtain for largand fixed andk,
Vam (L V)~ M(PEP V1= 57). (50)

We allow growingk, which can be routinely justified (see Rem&k and take a classical
Szegb result [20, Theorem 8.91.1], saying in the orthonormal casekwith oo, and 8
fixed,

M (LJ(JB)’ ﬁ) ~ k18
This completes the proof of the lemma as well as The@ent]

Very few explicit upper bounds are known for Laguerre polynomials, best of which is
probably the classical one due to Szegd (see e.g. [1]; a sharper inequality given in [18] is
not explicit and hardly could be used),

X

2
(@) <—< >
(Lk (x)) <torm T (51)
Unfortunately, because of the exttar we have to restrick first to the oscillatory re-

gion which gives a weak estimate. On the other hand, if our Conjedtisdrue, or any

other sharper bounds would be found, this automatically yields an estimate of the Laguerre
polynomials.

Lemma 18.

B2 + Aok + 20+ 2)%F3
L ( . 52

Proof. We just repeat a simple part of arguments of Secitor the Laguerre case in order
to make a full use of Szegd'’ inequality (51). We need an upper bound on the location of the

relative maxima ob—*x*" 2. In the absence of an analogue of (10), it makes no sense to
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seek estimates as precise as (5) (in fact, this time itis much easier, as we have one parameter
less, see [12]). We assume= 0. Applying Laguerre inequality (14) (né this time) and
excluding higher derivatives by the differential equation

Xy 4+ @+1-x)y +k(k+0)y=0 y=L",
one obtains
¥ 72 (k4 )y? + @+ 1= x)yy +x?) > 0,
or, introducing the logarithmic derivativéx) = y’/y,
k(k + o) 4+ (0 + 1 —x)t + xt2 > 0. (53)

From the condition

i (e—xxoc+1/2y2) —0,
dx
we get
Fx) = 2x —20—1
X) = 4x .

Substituting this into (14) yields
—4x? + 8(2k% + 20k + o+ L)x — (20 + 1)(2x + 3) > 0.

The greater root of this quadratic is less thaR 4 4ak + 2a + 2, and this is the sought,
even, as on can check, asymptotically sharp bound on the location of the last maximum.
Now the result follows from (51). O

Finally, the inequality (9) of Theorem 8 is an immediate corollary of (50) and (52).

Remark 6. Using in a similar way a limiting relation in the Askey scheme between two
polynomialsp; andg; [3,6,16], and assuming tha¥!(px, ¢) is known, one can readily
deduce some information oW (qx, ¢*). Moreover,¢™ is uniquely defined by the limiting
relations and the choice gffor py, as a result of our convention to keep the same auxiliary
function for the entire family. Thus, starting with, e.g. Jacobi polynomials, one can apply
exact bounds, asymptotics or inequalities to obtain something (and maybe guess the true
order), say, for Wilson, Hahn or continuous Hahn polynomials.

More accurate calculations in Lemma 16, without the restrigfiea « — o (x~1/2), as
well as some numerical evidences, suggest the following conjecture, which, if true, would

reduce estimates o¥1 (P,(C“’ﬁ), V1-— x2> to much easier ultraspherical case.

Conjecture 2. M (P,(C“’ﬁ) (x),v1— x2) is an increasing function i for « > f > —%.
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